
Journal of Statistical Physics, Vol. 124, Nos. 2-4, July/August 2006 ( C© 2006 )
DOI: 10.1007/s10955-005-8075-x

From Reactive Boltzmann Equations
to Reaction–Diffusion Systems

M. Bisi and L. Desvillettes

Received April 25, 2005; accepted August 18, 2005
Published Online: June 29, 2006

We consider the reactive Boltzmann equations for a mixture of different species of
molecules, including a fixed background. We propose a scaling in which the collisions
involving this background are predominant, while the inelastic (reactive) binary colli-
sions are very rare. We show that, at the formal level, the solutions of the Boltzmann
equations converge toward the solutions of a reaction-diffusion system. The coefficients
of this system can be expressed in terms of the cross sections of the Boltzmann kernels.
We discuss various possible physical settings (gases having internal energy, presence of
a boundary, etc.), and present one rigorous mathematical proof in a simplified situation
(for which the existence of strong solutions to the Boltzmann equation is known).
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1. INTRODUCTION

Gases in which chemical reactions are present can be described by various types
of equations. When one is interested only in global quantities (that is, quantities
which do not depend on the space variable x), systems of ODEs can be used (the
unknowns are then the global concentrations at time t).

We are interested here in situations when the spatial variable x has to be taken
into account, so that PDEs are used. In many papers, the gas is assumed to follow a
(reactive) Euler or Navier-Stokes system.(5) These systems can in turn be obtained
(at the formal level) from (reactive) kinetic equations of Boltzmann type.(4, 5)

Another possibility of modelling consists in considering that the main
process (apart from chemical reactions) is the diffusion of the concentration
of the species (this is particularly meaningful when the considered species are
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traces in a background medium). One is then led to write down reaction-diffusion
equations.(16) Equations of this kind can in some cases be obtained in a rigorous
mathematical way starting from particle systems.(9, 10, 20)

In this paper, we show how one can relate (reactive) kinetic equations of
Boltzmann type to such reaction-diffusion systems, by a suitable scaling. Such
a connection was explored in the 90s in a series of papers by R. Spigler and D.
H. Zanette,(17−19,21) in the case when the (reactive) collision operators are phe-
nomenological models such as Fokker-Planck or BGK (or for discrete velocities
models). We introduce here more realistic reactive collision kernels (of Boltzmann
type), such as those devised by A. Rossani and G. Spiga,(15) M. Groppi and G.
Spiga(14) or L. Desvillettes, R. Monaco and F. Salvarani.(12)

The scaling which is used consists in considering that the dominant process
to which the various species are submitted is (elastic) scattering with a fixed
background, while advection and elastic collisions between the considered species
are of lower order, and reactive collisions of even lower order. Finally, the time is
rescaled in order to recover the time-scale of diffusion. This scaling is very close
in spirit to the diffusive approximation of neutron transport(6) or the Rosseland
approximation of radiative transfer.(13)

More precisely, we consider a mixture of N + 1 gases As , s = 1, . . . , N +
1, and we assume that one of them (for instance AN+1) is much denser than
all the others, so that it plays the role of a “background.” This background is
assumed to be distributed according to a fixed Maxwellian M . Then, we denote
by f s ≡ f s(t, x, v) the s–th one–particle distribution function (number density of
particles which at time t and point x have velocity v) of the remaining species As ,
s = 1, . . . , N .

We assume that f s satisfies the following rescaled (reactive) Boltzmann
equation:

ε
∂ f s

∂t
+ v · ∂ f s

∂x
= 1

ε
Qs

EL( f s, M) + ε p
N∑

r=1

Qsr
EL( f s, f r ) + ε Qs

C H (f), (1)

where Qs
EL and Qsr

EL denote the elastic Boltzmann kernels (defined precisely in
next section) and Qs

CH denotes the reactive Boltzmann kernel (also defined in next
section) which depends on the whole set f of densities. Finally, p can be any real
number bigger or equal to 0.

We study in this paper the limit ε → 0 and relate Eq. (1) to systems of
reaction-diffusion equations for the number densities ρs , of the type:

∂ρs

∂t
− �s �xρ

s = ±� (�ρ3ρ4 − ρ1ρ2), (2)

where �s , � and � are constants which are computed in terms of the masses, link
chemical energy, and cross sections of the Boltzmann kernels appearing in (1).
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Eq. (2) corresponds to the case when N = 4 and one binary reversible reaction
only is considered.

The paper is structured as follows. In Sec. 2, we describe in a precise way
the various kernels and we recall their main properties (conservations, H-theorem,
etc.). Then, we detail in Sec. 3 the formal computation allowing to recover the
reaction-diffusion system (2) from the (rescaled) kinetic equation (1). For pedagog-
ical reasons, we first perform the computation in the so-called Maxwell molecules
case (subsection 3.1), before treating general cross sections (subsection 3.2).
Section 4 is devoted to various extensions, including more complex chemistry
than just binary reversible reactions, reactions involving the background, gases
having degrees of internal energy, treatment of the boundaries. Finally, we prove
in a mathematically rigorous way in Sec. 5 that the convergence holds in a special
case in which the existence of solutions to the kinetic equation is known (that is,
when the equation is linear).

2. DESCRIPTION OF THE (RESCALED) KINETIC MODEL

We recall here that we consider a mixture of N + 1 gases As , s = 1, . . . , N +
1, and we assume that one of them (for instance AN+1) is much denser than all the
other ones, so that it plays the role of a “background.” In the sequel, this background
is assumed to be distributed according to the reduced centered Maxwellian:

M(v) =
(

1

2π

) 3
2

exp

(
− |v|2

2

)
. (3)

Without loss of generality we have set particle mass, number density and temper-
ature of the background equal to 1, and mean velocity equal to 0.

We denote by f s ≡ f s(t, x, v) the s-th one–particle distribution function
(number density of molecules of the s-th species which at time t and point x have
velocity v) of the remaining species As , s = 1, . . . , N , while the symbol f will
stand for the vector ( f 1, . . . , f N ). We assume that molecules of any species s can
interact elastically both with the molecules of whatever other species r (including
the case r = s), and with the particles of the fixed background. Moreover, we shall
also take into account a suitable bimolecular reversible chemical reaction of type

As + Ar ⇀↽ Ah + Ak . (4)

We shall assume the direct reaction to be endothermic, in the sense that it provides
an increase of chemical energy. For this physical situation, the extended set of
Boltzmann equations reads as

∂ f s

∂t
+ v · ∂ f s

∂x
= Qs

EL( f s, M) +
N∑

r=1

Qsr
EL( f s, f r ) + Qs

CH(f), s = 1, . . . , N .

(5)
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In this formula, the operators Qs
EL( f s, M) and Qsr

EL( f s, f r ) represent the net pro-
duction of particles s (with velocity v) due to elastic collisions with the background
and with the species r , respectively, while the operator Qs

CH(f) stands for the net
gain of molecules s due to chemical reactions.

The bi–species elastic collision operator for the species s and r takes the form

Qsr
EL( f s, f r )(v) =

∫
R3

∫
S2

Bsr (v − v∗, ω̂)
[

f s(v′) f r (v′
∗) − f s(v) f r (v∗)

]
dv∗ dω̂.

(6)

Here, (v, v∗) stand for the pre–collision velocities, while (v′, v′
∗) stand for the

post–collision ones. Taking into account the conservations of momentum and of
kinetic energy, (v′, v′

∗) can be expressed in terms of (v, v∗) and of the unit vector
ω̂ ∈ S2 as:

v′ = ms

ms + mr
v + mr

ms + mr
v∗ + mr

ms + mr
|v − v∗| Tω̂

(
v − v∗
|v − v∗|

)
,

v′
∗ = ms

ms + mr
v + mr

ms + mr
v∗ − ms

ms + mr
|v − v∗| Tω̂

(
v − v∗
|v − v∗|

)
,

(7)

where ms denotes the particle mass of the species s, and Tω̂ denotes the symmetry
with respect to ω̂⊥:

Tω̂y = y − 2 (ω̂ · y) ω̂ . (8)

The functionBsr in (6) stands for the so–called differential cross section multiplied
by the relative speed, and it depends on the impact parameter of the collision and
the modulus of the relative velocity of the incoming particles (that is, | v−v∗

|v−v∗| · ω̂|
and |v − v∗|).

The linear Boltzmann collision operator Qs
EL( f s, M), which involves only

one species As together with the background, can be obtained as particular case of
the general bi-species elastic operator (6), by replacing the distribution function f r

by the Maxwellian M :

Qs
EL( f s, M)(v) =

∫
R3

∫
S2

Bs(v − v∗, ω̂)
[

f s(v′)M(v′
∗) − f s(v)M(v∗)

]
dv∗ dω̂.

(9)
The expressions of (v′, v′

∗) are again (7) with 1 instead of mr , and Bs depends only
on | v−v∗

|v−v∗| · ω̂| and |v − v∗|.
Considering now a chemical reaction of the type

Al + Ar ⇀↽ Ah + Ak , (10)

the total mass is conserved, so we have m := ml + mr = mh + mk . We assume
the direct reaction to be endothermic, thus, if Es denotes the energy of chemical
link of the species s, we have �Ehk

lr = Eh + Ek − El − Er ≥ 0. Bearing in mind
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conservation of total (kinetic plus chemical) energy, to a variation of chemical
energy there corresponds an opposite variation of kinetic energy. As a conse-
quence, contrary to elastic collisions, the relative speed varies during a chemical
reaction. More precisely, with reference to the process Al + Ar → Ah + Ak with
(v, v∗) standing for the velocities of the ingoing particles (l, r ), the post–collision
velocities are such that:

|v′ − v′
∗| = ∣∣vhk

lr − v∗hk
lr

∣∣ =
[

µlr

µhk

(
|v − v∗|2 − 2 �Ehk

lr

µlr

)] 1
2

, (11)

where µlr , µhk are the reduced masses µlr = (mlmr )/m, µhk = (mhmk)/m. So, a
threshold effect arises in the endothermic reaction: this reaction cannot happen in

case of insufficient impinging kinetic energy, namely if |v − v∗|2 <
2 �Ehk

lr

µlr . Taking
into account the conservation of momentum, the velocities after collision are
provided by

v′ = vhk
lr = αl v + αr v∗ + αk

[
µlr

µhk

(
|v − v∗|2 − 2 �Ehk

lr

µlr

)] 1
2

Tω̂

(
v − v∗
|v − v∗|

)
,

v′
∗ = v∗hk

lr = αl v + αr v∗ − αh

[
µlr

µhk

(
|v − v∗|2 − 2 �Ehk

lr

µlr

)] 1
2

Tω̂

(
v − v∗
|v − v∗|

)
,

(12)

where αl = ml/m, αr = mr/m, etc.
The net production of molecules l due to the reaction (10) is given by

Ql
CH(f)(v) =

∫
R3

∫
S2

H

(
|v − v∗|2 − 2 �Ehk

lr

µlr

)
Bhk

lr (v − v∗, ω̂)

×
[(

µlr

µhk

)3

f h
(
vhk

lr

)
f k

(
v∗hk

lr

) − f l(v) f r (v∗)

]
dv∗ dω̂, (13)

where H denotes the unit step function:

H (x) =
{

1 if x ≥ 0,

0 if x < 0,

and Bhk
lr depends only on | v−v∗

|v−v∗| · ω̂| and |v − v∗|. Since the differential cross
sections have to satisfy the indistinguishableness condition

Bhk
lr (v − v∗, ω̂) = Bkh

rl (v − v∗, ω̂),
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the chemical operator for the species r may be obtained from (13) simply by
permutations of indices:

Qr
CH(f)(v) =

∫
R3

∫
S2

H

(
|v − v∗|2 − 2 �Ehk

lr

µlr

)
Bhk

lr (v − v∗, ω̂)

×
[(

µlr

µhk

)3

f k
(
vkh

rl

)
f h

(
v∗kh

rl

) − f r (v) f l (v∗)

]
dv∗ dω̂ (14)

where (vkh
rl , v∗kh

rl ) are provided by (12) by exchanging the indices l ↔ r , h ↔ k.
On the other hand, Qh

CH(f) is a bit different because the reverse exothermic reaction
can occur whatever pre–collision relative speed is, so that we do not need a unit
step function in the integrand:

Qh
CH(f)(v) =

∫
R3

∫
S2

Blr
hk(v − v∗, ω̂)

[(
µhk

µlr

)3

f l
(
vlr

hk

)
f r

(
v∗lr

hk

)

− f h(v) f k(v∗)

]
dv∗ dω̂, (15)

where the function Blr
hk is related to Bhk

lr by the so–called “microreversibility
condition”:

|v − v∗|Bhk
lr (v − v∗, ω̂) =

(
µhk

µlr

)2 ∣∣vhk
lr − v∗hk

lr

∣∣Blr
hk

(
vhk

lr − v∗hk
lr , ω̂

)
.

Finally, Qk
CH(f) can be cast as (15) with obvious permutations of indices:

Qk
CH(f)(v) =

∫
R3

∫
S2

Blr
hk(v − v∗, ω̂)

[(
µhk

µlr

)3

f r
(
vrl

kh

)
f l

(
v∗rl

kh

)

− f k(v) f h(v∗)

]
dv∗ dω̂. (16)

In the sequel, we shall also use the weak forms of the elastic and chemical
collision operators. For the bi-species elastic operator Qsr

EL( f s, f r ), it can be
shown (by means of simple changes of variables) that for each function ϕs(v) with
suitable properties of integrability:∫

R3

ϕs(v) Qsr
EL( f s, f r )(v) dv

=
∫

R3

∫
R3

∫
S2

Bsr (v − v∗, ω̂) [ϕs(v′) − ϕs(v)] f s(v) f r (v∗) dv dv∗ dω̂, (17)
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or, in equivalent form,∫
R3

ϕs(v) Qsr
EL( f s, f r )(v) dv

= − 1

2

∫
R3

∫
R3

∫
S2

Bsr (v − v∗, ω̂) [ϕs(v′) − ϕs(v)]

× [ f s(v′) f r (v′
∗) − f s(v) f r (v∗)] dv dv∗ dω̂. (18)

We have the same formulas for the linear operator Qs
EL( f s, M):∫

R3

ϕs(v) Qs
EL( f s, M)(v) dv

= − 1

2

∫
R3

∫
R3

∫
S2

Bs(v − v∗, ω̂) [ϕs(v′) − ϕs(v)]

× [ f s(v′)M(v′
∗) − f s(v)M(v∗)] dv dv∗ dω̂. (19)

In particular, taking ϕs(v) = 1 in (17) and (19) yields the conservation of number
density for each species:∫

R3

Qsr
EL( f s, f r )(v) dv = 0,

∫
R3

Qs
EL( f s, M)(v) dv = 0. (20)

On the other hand, for the chemical operators corresponding to the reaction (10),
it can be proven(15) that if we denote by K l

CH(v, v∗, ω̂) the whole integrand of (13),
the following relations hold:∫

R3

ϕl (v) Ql
CH(f)(v) dv =

∫
R3

∫
R3

∫
S2

ϕl (v)K l
CH(v, v∗, ω̂) dv dv∗ dω̂,

∫
R3

ϕr (v) Qr
CH(f)(v) dv =

∫
R3

∫
R3

∫
S2

ϕr (v∗)K l
CH(v, v∗, ω̂) dv dv∗ dω̂,

∫
R3

ϕh(v) Qh
CH(f)(v) dv = −

∫
R3

∫
R3

∫
S2

ϕh
(
vhk

lr

)
K l

CH(v, v∗, ω̂) dv dv∗ dω̂,

∫
R3

ϕk(v) Qk
CH(f)(v) dv = −

∫
R3

∫
R3

∫
S2

ϕk
(
v∗hk

lr

)
K l

CH(v, v∗, ω̂) dv dv∗ dω̂. (21)

From now on, we shall study the set of Boltzmann equations (5) in a physical
situation in which the fixed background is assumed denser than other species,
the dominant role in the evolution of each species s being played by the elastic
collisions with background particles. We therefore study in detail the following
rescaled Boltzmann equations:

ε
∂ f s

∂t
+ v · ∂ f s

∂x
= 1

ε
Qs

EL( f s, M) + ε p
N∑

r=1

Qsr
EL( f s, f r ) + ε Qs

CH(f) , (22)
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with the power p ≥ 0. Here, the main assumption is that the chemical kernel is of
order ε. By keeping any possible power p ≥ 0, we only assume that the interspecies
collisions are much less frequent than the collisions with the background. Since
the chemical reactions are very slow processes, and since we are interested in their
time scale, we put the same scaling in front of the temporal derivative.

We shall see that, in this regime dominated by the collisions with the back-
ground, the final macroscopic equations we shall build up are not influenced by the
particular scaling (that is, the power p) that we choose for the other bimolecular
elastic encounters.

For the dominant operator, that is the elastic linear one, the following dissi-
pation estimate (H-theorem) holds(3):∫

R3

f s(v)

Ms(v)
Qs

EL( f s, M)(v) dv ≤ 0 , (23)

where Ms(v) is the Maxwellian having the same macroscopic parameters (density,
mean velocity and temperature) as the background distribution (3), but involving
the particle mass ms :

Ms(v) =
(

ms

2π

) 3
2

exp

(
− ms |v|2

2

)
. (24)

More precisely, by applying (19) with ϕs(v) = f s(v)/Ms(v), we get∫
R3

f s(v)

Ms(v)
Qs

EL( f s, M)(v) dv = −1

2

∫
R3

∫
R3

∫
S2

Bs

[
f s(v′)

Ms(v′)
− f s(v)

Ms(v)

]

× [
f s(v′)M(v′

∗) − f s(v)M(v∗)
]

dv dv∗ dω̂

= −1

2

∫
R3

∫
R3

∫
S2

Bs

[
f s(v′)

Ms(v′)
− f s(v)

Ms(v)

]2

× Ms(v) M(v∗) dv dv∗ dω̂ ≤ 0 . (25)

Thanks to (25), as soon as Bs > 0 a.e., the equality in (23) holds if and only
if f s(v) = ρs Ms(v), where ρs corresponds to the number density of the gas As ,
and also if and only if Qs

EL( f s, M) = 0. So, in our scaling, after an initial time
layer (of duration ε2), collisions force the distributions f s towards a Maxwellian
configuration.

3. FORMAL DERIVATION OF REACTION–DIFFUSION EQUATIONS

In this section we focus our attention on a mixture of five gases, A1, A2, A3,
A4, plus the background, that, besides all elastic collisions, can interact according
to the bimolecular reversible chemical reaction

A1 + A2 ⇀↽ A3 + A4, (26)
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with the direct one endothermic.
We show that in this case, at the formal level, the solution of Eq. (22)

converges to the solution of a reaction-diffusion system like (2). In subsection
3.1, we concentrate on the Maxwell molecules case, in which all the constants
can be computed. Then, we extend the result to all kinds of cross sections in
subsection 3.2.

3.1. The Maxwell Molecules Case

In this subsection, we assume that all cross sections are of Maxwell molecules
type, which means that the intermolecular forces are of “inverse power” kind,
precisely proportional to 1/d5, where d is the intermolecular distance. This as-
sumption implies(3) that the differential cross sections (both the elastic and the
chemical ones) depend only on the angle formed by ω̂ and the relative velocity:

Bs(v − v∗, ω̂) = B̃s

(∣∣∣∣ω̂ · v − v∗
|v − v∗|

∣∣∣∣
)

,

Bsr (v − v∗, ω̂) = B̃sr

(∣∣∣∣ω̂ · v − v∗
|v − v∗|

∣∣∣∣
)
,

B34
12(v − v∗, ω̂) = B̃34

12

(∣∣∣∣ω̂ · v − v∗
|v − v∗|

∣∣∣∣
)

. (27)

For each species s = 1, . . . , 4, let us consider the rescaled Boltzmann equa-
tion introduced in the previous section:

ε
∂ f s

ε

∂t
+ v · ∂ f s

ε

∂x
= 1

ε
Qs

EL

(
f s
ε , M

) + ε p
4∑

r=1

Qsr
EL

(
f s
ε , f r

ε

) + ε Qs
CH(fε) . (28)

We first see that the linear elastic operator is the dominant one, in the sense that

Qs
EL

(
f s
ε , M

) = O(ε). (29)

But the linear operator Ls = Qs
EL( · , M) is bounded, self–adjoint and Fredholm in

L2(M−1(v) dv) (this is a consequence of the computations in Ref. 3 for example).
Moreover, according to the H-theorem (23), the spectrum of Ls is included in
R

−, and 0 is an eigenvalue of order 1 whose eigenvector is the function Ms . As a
consequence, f s

ε is a perturbation of order 1 of a collision equilibrium:

f s
ε (t, x, v) = ns

ε(t, x) Ms(v) + ε g̃s
ε(t, x, v), (30)

with g̃s
ε = O(1). Now, since ρs

ε denotes the number density of the distribution
function f s

ε , i.e. ρs
ε = ∫

R3 f s
ε (v) dv, by integrating the equality (30) we get:

ρs
ε = ns

ε + ε

∫
R3

g̃s
ε(v) dv . (31)
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This allows to express ns
ε as ρs

ε plus some O(ε) perturbation. By inserting this
result into (30) we obtain:

f s
ε =

(
ρs

ε − ε

∫
R3

g̃s
ε(v) dv

)
Ms + ε g̃s

ε = ρs
ε Ms + ε gs

ε , (32)

where gs
ε stands for

gs
ε = g̃s

ε − Ms
∫

R3

g̃s
ε(v) dv

and obviously fulfills the constraint∫
R3

gs
ε(v) dv = 0 .

Let us now write down the macroscopic evolution equations for the number
density and for the mean velocity starting from the kinetic Eq. (28).

Integrating (28) over the velocity variable, that is multiplying (28) by the
weight function ϕs(v) = 1, we get:

ε
∂

∂t

∫
R3

f s
ε (v) dv + ∂

∂x
·
∫

R3

v f s
ε (v) dv = ε

∫
R3

Qs
CH(fε)(v) dv , (33)

where the conservation of mass (20) for elastic collisions has been used.
Then, multiplying (28) by ϕs(v) = v, we get:

ε
∂

∂t

∫
R3

v f s
ε (v) dv + ∂

∂x
·
∫

R3

(v ⊗ v) f s
ε (v) dv

= 1

ε

∫
R3

v Qs
EL

(
f s
ε , M

)
(v) dv + ε p

4∑
r=1

∫
R3

v Qsr
EL

(
f s
ε , f r

ε

)
(v) dv

+ ε

∫
R3

v Qs
CH(fε)(v) dv . (34)

Let us compute the collision contribution due to the dominant operator (the
linear elastic one). From formulas (7), we get:

v′ − v = − 2

ms + 1
|v − v∗|

(
ω̂ · v − v∗

|v − v∗|
)

ω̂.

So, bearing in mind the Maxwell molecule assumption (27), the angular integration
in the weak form (17) relevant to ϕs(v) = v provides

∫
S2

Bs(v − v∗, ω̂)(v′ − v) dω̂

= − 2

ms + 1
|v − v∗|

∫
S2

B̃s

(∣∣∣∣ω̂ · v − v∗
|v − v∗|

∣∣∣∣
) (

ω̂ · v − v∗
|v − v∗|

)
ω̂ dω̂

= − νs (v − v∗) . (35)
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Performing the integral above in polar coordinates, we get for the constant νs the
value:

νs = 4π

ms + 1

∫ π

0
B̃s(cos θ ) cos2 θ sin θ dθ .

Finally, we obtain∫
R3

v Qs
EL

(
f s
ε , M

)
(v) dv = − νs

∫
R3

v f s
ε (v) dv. (36)

This last integral also appears in eq. (33) for number density, hence we can “insert”
the momentum equation (34) into (33), ending up with:

∂

∂t

∫
R3

f s
ε (v) dv + ∂

∂x
·
{

− ε

νs

∂

∂t

∫
R3

v f s
ε (v) dv

− 1

νs

∂

∂x
·
∫

R3

(v ⊗ v) f s
ε (v) dv + ε p

νs

4∑
r=1

∫
R3

v Qsr
EL

(
f s
ε , f r

ε

)
(v) dv

+ ε

νs

∫
R3

v Qs
CH(fε)(v) dv

}
=

∫
R3

Qs
CH(fε)(v) dv (37)

(all terms have been divided by ε).
At this point, let us recall that each distribution function f s

ε takes the
form (32), thus at the leading order it coincides with a Maxwellian with num-
ber density ρs

ε , zero mean velocity and normalized temperature. Therefore∫
R3

v f s
ε (v) dv = O(ε),

∫
R3

(v ⊗ v) f s
ε (v) dv = 1

ms
ρs

ε I + O(ε), (38)

where I is the identity tensor. Moreover, since Qsr
EL(Ms, Mr ) = 0, we see that the

elastic collision contributions on the left-hand side of (37) vanish (to the leading
order): ∫

R3

v Qsr
EL

(
f s
ε , f r

ε

)
(v) dv = O(ε). (39)

Therefore, even in the case p = 0, Eq. (37) does not contain this term among
the O(1) contributions. Finally, following the strategy of Ref. 2, we compute
the remaining chemical term (right-hand side of (37)). Note first that thanks to
relations (21), ∫

R3

Qs
CH(fε)(v) dv = ±

∫
R3

Q1
CH(fε)(v) dv

with positive sign for s = 1, 2 and negative for s = 3, 4. Then, notice that when
f s
ε = ρs

ε Ms + O(ε) for each s, the content of the square brackets in the chemical
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collision operator Q1
CH(fε) becomes(

µ12

µ34

)3

f 3
ε

(
v34

12

)
f 4
ε

(
v∗34

12

) − f 1
ε (v) f 2

ε (v∗)

= 1

(2π )3

{ (m1m2)3

(m3m4)
3
2

ρ3
ε ρ4

ε exp

[
1

2

(
m1|v|2 + m2|v∗|2 − m3|v34

12|2 − m4|v∗34
12|2

)]

− (m1m2)
3
2 ρ1

ε ρ2
ε

}
exp

[
− 1

2

(
m1|v|2 + m2|v∗|2

)] + O(ε) .

Taking into account the conservation of kinetic plus chemical energy, the argument
of the exponential function inside the brackets reduces to �E34

12 . So, if we denote
by

ν34
12 =

∫
S2

B̃34
12

(∣∣∣∣ω̂ · v − v∗
|v − v∗|

∣∣∣∣
)

dω̂,

the sought chemical contribution results in:∫
R3

Q1
CH(fε)(v) dv

= ν34
12

(m1m2)
3
2

(2π)3

[(
µ12

µ34

) 3
2

exp
(
�E34

12

)
ρ3

ε ρ4
ε − ρ1

ε ρ2
ε

]

×
∫

R3

∫
R3

H

(
|v − v∗|2 − 2 �E34

12

µ12

)
exp

[
− 1

2
(m1|v|2 + m2|v∗|2)

]
dv dv∗

+O(ε) = ν34
12

2√
π

�

(
3

2
,�E34

12

)

×
[(

µ12

µ34

) 3
2

exp
(
�E34

12

)
ρ3

ε ρ4
ε − ρ1

ε ρ2
ε

]
+ O(ε),

(40)
where �(α, x) is the incomplete Euler gamma function(1):

�(α, x) =
∫ ∞

x
tα−1 e−t dt .

Finally, by inserting results (38), (39), (40) into the macroscopic Eq. (37), we
obtain the set of approximated reaction–diffusion equations:

∂ρs
ε

∂t
− 1

msνs
�xρ

s
ε = λsν34

12

2√
π

�

(
3

2
,�E34

12

)

×
[(

µ12

µ34

) 3
2

exp
(
�E34

12

)
ρ3

ε ρ4
ε − ρ1

ε ρ2
ε

]
+ O(ε), (41)

where λ1 = λ2 = −λ3 = −λ4 = 1.
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Of course, any limit point ρs of the sequence ρs
ε satisfies

∂ρs

∂t
− 1

msνs
�xρ

s = λsν34
12

2√
π

�

(
3

2
,�E34

12

)

×
[(

µ12

µ34

) 3
2

exp(�E34
12)ρ3ρ4 − ρ1ρ2

]
. (42)

Notice that the chemical contributions vanish only if the content of the square
brackets involving ρ3 ρ4 and ρ1 ρ2 vanishes. This reproduces exactly the “mass
action law” corresponding to chemical collision equilibria.(2, 15)

3.2. Case of General Cross Sections

A system of reaction–diffusion equations like (42) can be derived from the
rescaled kinetic model (28) without the particular assumption (27) on the differen-
tial cross sections. The procedure in this case is a bit different from before, since
the elastic contribution

∫
R3v Qs

EL( f s
ε , M)(v) dv is not directly computable in terms

of the momentum of f s
ε as in (36).

We first note that if Maxwell molecules are replaced by hard potentials or
hard spheres with cutoff (that is the usual assumption for rarefied gases(3), it is
still possible to resort to the spectral properties of the operator Ls . This operator
is not bounded anymore, but it is still possible(3) to show that the solution to the
rescaled Eq. (28) takes the form (32):

f s
ε = ρs

ε Ms + ε gs
ε , (43)

with gs
ε an O(1) function with vanishing number density. Inserting this formula

into the macroscopic Eq. (33), we get:

∂ρs
ε

∂t
+ ∂

∂x
·
∫

R3

v gs
ε(v) dv =

∫
R3

Qs
CH(fε)(v) dv . (44)

In order to express the streaming contribution in terms of the number density, we
need more information about the correction gs

ε . By inserting the expression (43)
into the kinetic Eq. (28), we obtain that gs

ε is solution to

Qs
EL

(
gs

ε , M
)
(v) = v · ∂

∂x

(
ρs

ε Ms
) + O(ε) . (45)

Let us define the function gs
1 as the solution to the problem

Qs
EL

(
gs

1, M
)
(v) = v Ms(v), (46)

fulfilling the constraint ∫
R3

gs
1(v) dv = 0 . (47)
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According to the spectral properties of Ls (and still for hard potentials or hard
spheres), the property ∫

R3

v Ms(v) dv = 0

implies that the linear problem (46) has a unique solution,(3, 6) apart from a constant
that is univocally determined by the constraint (47). By comparing the two Eqs.
(45) and (46), and bearing in mind that gs

ε has zero number density, we have

gs
ε = ∂ρs

ε

∂x
· gs

1 + O(ε) . (48)

We now give standard information for the problem (46). Notice that for each
isometry R ∈ O(R3),

Qs
EL

(
R ◦ gs

1, M
) = R ◦ Qs

EL

(
gs

1, M
)
. (49)

Moreover, as extensively discussed in Ref. 11, it can be shown (by means of
suitable changes of variables) that for all R ∈ O(R3),

Qs
EL

(
gs

1 ◦ R, M
)
(v) = Qs

EL

(
gs

1, M
)
(Rv). (50)

Recalling eq. (46), the right-hand side of (50) can be rewritten as

Qs
EL

(
gs

1, M
)
(Rv) = (Rv) Ms(v) = R ◦ Qs

EL

(
gs

1, M
)
(v). (51)

Thus finally, collecting equalities (49), (50), (51) we have

Qs
EL

(
R ◦ gs

1, M
) = Qs

EL

(
gs

1 ◦ R, M
)
.

Then, thanks to the uniqueness of the solution to the problem

Qs
EL(z, M)(v) = (Rv)Ms(v) with

∫
R3

z(v) dv = 0,

we see that

R
(
gs

1(v)
) = gs

1(Rv), ∀R ∈ O(R3). (52)

This allows to conclude (see Lemma 3 of Ref. 11) that the unknown function gs
1

takes the form

gs
1(v) = − hs(|v|) v , (53)

where the function hs depends only on the modulus of v. By substituting this result
into (48), the streaming contribution in the macroscopic Eq. (44) turns out to be

∂

∂x
·
∫

R3

v gs
ε(v) dv = −

3∑
i, j=1

∂

∂xi

∂ρs
ε

∂x j

∫
R3

hs(|v|) vi v j dv + O(ε)

= −�x

[
ρs

ε

∫
R3

hs(|v|) |v|2
3

dv

]
+ O(ε). (54)
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Note that the diffusion coefficient, which from now on will be denoted by ϒ s , is
actually strictly positive:

ϒ s = 1

3

∫
R3

hs(|v|) |v|2 dv = − 1

3

∫
R3

gs
1(v) · v dv

= − 1

3

∫
R3

gs
1(v)

Ms(v)
· Qs

EL

(
gs

1, M
)
(v) dv

(where the last equality follows from (46)), and a computation analogous to (25)
shows that the right-hand side is strictly positive (since gs

1 is not a Maxwellian).
The evaluation of the chemical contributions appearing in (44) does not

involve substantial complications with respect to the previous subsection. Of
course, for non Maxwell molecules, the integration over the angular variable
does not yield a constant, therefore the final result cannot be completely explicit.
Precisely, the reaction–diffusion system can be cast as

∂ρs

∂t
− ϒ s �xρ

s = λs K
(
m1, m2,�E34

12

) [(
µ12

µ34

) 3
2

exp
(
�E34

12

)
ρ3 ρ4 − ρ1 ρ2

]
,

(55)
where the coefficient K(m1, m2,�E34

12) stands for

K
(
m1, m2,�E34

12

) = (m1m2)
3
2

(2π )3

∫
R3

∫
R3

∫
S2

H

(
|v − v∗|2 − 2 �E34

12

µ12

)

×B34
12(v − v∗, ω̂) exp

[
− 1

2

(
m1|v|2 + m2|v∗|2

)]
dv dv∗ dω̂ . (56)

4. EXTENSIONS

In this section, we shall extend the formal derivation of reaction–diffusion
equations described in Sec. 3 to some more complicated physical situations. We
shall systematically focus our attention on the differences with respect to Sec. 3.

4.1. Chemical Reactions Involving the Background

The derivation of equations of reaction–diffusion type starting from the ki-
netic model (22) can be extended to different kinds of chemical reactions. In par-
ticular, particles of the fixed background may be involved in chemical interactions,
with considerable consequences on the chemical terms of the relevant reaction–
diffusion equations. This subsection will be mainly devoted to two examples. In
the first one, we shall consider a bimolecular reversible reaction analogous to (26)
but in which one of the species is the background. Then, in the second one, we
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shall investigate a non–reversible reaction. These two situations are chosen only
for illustrative purposes, and obviously do not span the whole range of possible
interactions.

4.1.1. A Reversible Reaction Involving the Background

We consider a mixture of four gases, A1, A2, A3 plus the background B whose
particles are taken with unitary mass and with vanishing energy of chemical link.
These species can interact, besides elastic encounters, according to

A1 + A2 ⇀↽ A3 + B . (57)

This chemical reaction is assumed reversible, and the conservation of total mass
implies that particle masses are such that m1 + m2 = m3 + 1 = m. If the direct
reaction is endothermic, the structure of the chemical collision operators Qs

CH
for s = 1, 2, 3 is very similar to (13)–(15), only with the fixed Maxwellian M
replacing the distribution function f k :

Q1
CH(f)(v) =

∫
R3

∫
S2

H

(
|v − v∗|2 − 2 �E3

12

µ12

)
B3B

12 (v − v∗, ω̂)

×
[(

µ12

µ3B

)3

f 3(v3B
12 ) M(v∗3B

12 ) − f 1(v) f 2(v∗)

]
dv∗ dω̂ . (58)

Then, Q2
CH can be obtained by means of suitable permutations of indices, and

analogously Q3
CH, recalling that in the reverse exothermic reaction the unit step

function H disappears. The weak forms of such chemical operators can be cast
analogously to (21):∫

R3

ϕ1(v) Q1
CH(f)(v) dv =

∫
R3

∫
R3

∫
S2

ϕ1(v)K 1
CH(v, v∗, ω̂) dv dv∗ dω̂,

∫
R3

ϕ2(v) Q2
CH(f)(v) dv =

∫
R3

∫
R3

∫
S2

ϕ2(v∗)K 1
CH(v, v∗, ω̂) dv dv∗ dω̂,

∫
R3

ϕ3(v) Q3
CH(f)(v) dv = −

∫
R3

∫
R3

∫
S2

ϕ3
(
v3B

12

)
K 1

CH(v, v∗, ω̂) dv dv∗ dω̂, (59)

where K 1
CH(v, v∗, ω̂) denotes the integrand of (58). Notice that, contrary to the

classical chemical reactions of type (10), in the present chemical frame involving
also background particles, we lose conservation of total number density and of
momentum, in the sense that:

3∑
s=1

∫
R3

Qs
CH(f)(v) dv �= 0 ,

3∑
s=1

∫
R3

ms v Qs
CH(f)(v) dv �= 0 . (60)
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In fact, during each direct chemical reaction (57), a part of the ingoing mass
and momentum is absorbed by the fixed background, thus it disappears from our
considered system; on the other hand, in the reverse reaction, the background
causes a gain of mass and momentum to the system. We would reobtain the
classical conservation laws if the background were not assumed fixed, and its
evolution were governed by a kinetic Boltzmann equation.

For the present physical situation, if we rescale the Boltzmann equation as
in (22), then the procedure described in section 3 yields the following reaction–
diffusion equations:

∂ρs

∂t
− ϒ s �xρ

s = λs K
(
m1, m2,�E3

12

) [(
µ12

µ3B

) 3
2

× exp
(
�E3

12

)
ρ3 − ρ1 ρ2

]
, s = 1, 2, 3 (61)

with λ1 = λ2 = −λ3 = 1, and the coefficient K given in (56). Note that the first
part of the term inside the square brackets presents only a linear dependence on
the unknown field ρ3, since the partner of the gas A3 in the chemical reaction is
the fixed background. If the background had been involved in both sides of the
chemical reaction, for instance A1 + B ⇀↽ A2 + B, we would have ended up with
a completely linear reaction–diffusion system. This system will be extensively
discussed from a mathematical point of view in Sec. 5.

4.1.2. An Irreversible Reaction Involving Three Species
in the Products of Reaction

Let us now describe the evolution of a mixture of five gases, As , s = 1, . . . , 4,
plus the background B, undergoing mechanical encounters and the following
irreversible chemical reaction:

A1 + A2 −→ A3 + A4 + B . (62)

This means that a collision between two particles of the species A1, A2 may
give rise to three particles, of species A3, A4 and B respectively, but the reverse
phenomenon cannot happen. Consequently, the chemical operators relevant to
species A1, A2 will consist only of a loss term, since each chemical reaction causes
a loss of a particle 1 and of a particle 2, while, on the other hand, the chemical
operators relevant to species A3, A4 shall take into account only gain of molecules.
Since the reaction is not reversible, in this part of the paper it is convenient to change
a bit the notations: we shall denote by B the scattering kernel, the vectors (v1, v2)
shall stand for the velocities of the ingoing particles (A1, A2), and (v3, v4, vB) for
the velocities of the outgoing particles (A3, A4, B). Conservation of total mass
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implies that m1 + m2 = m3 + m4 + 1 = m, while conservations of momentum
and total energy write as

m1v1 + m2v2 = m3v3 + m4v4 + vB , (63)

1

2
m1|v1|2 + E1+ 1

2
m2|v2|2 + E2 = 1

2
m3|v3|2 + E3+ 1

2
m4|v4|2 + E4+ 1

2
|vB |2.

(64)

If we assume the reaction (62) exothermic, the chemical operator for the species 1
reads as

Q1
CH(f)(v1) = −

∫
D1

B(v1, v2, v3, v4, vB) f 1(v1) f 2(v2) dv2 dv3 dv4 dvB, (65)

where D1 denotes the set of all vectors (v2, v3, v4, vB) such that the constraints (64)
and (64) are fulfilled. Thus, unlike the classical quintuple integral operator (13),
in the present frame the quantity B is a distribution with an 8-dimensional support
(twelve components of the vector (v2, v3, v4, vB) minus four constraints). This is
due to the fact that with respect to the classical reaction A1 + A2 −→ A3 + A4, we
have here three more additional free parameters: the components of the background
velocity vB . The operator for the species 2 is analogous, but now we have to
integrate over the velocity variable v1 instead of v2:

Q2
CH(f)(v2) = −

∫
D2

B(v1, v2, v3, v4, vB) f 1(v1) f 2(v2) dv1 dv3 dv4 dvB, (66)

where D2 contains the vectors (v1, v3, v4, vB) fulfilling the equalities (64) and
(64). The corresponding operators for species 3 and 4 have the same structure
but the opposite sign, since each chemical reaction causes a gain of two particles
(A3, A4):

Q3
CH(f)(v3) =

∫
D3

B(v1, v2, v3, v4, vB) f 1(v1) f 2(v2) dv1 dv2 dv4 dvB, (67)

Q4
CH(f)(v4) =

∫
D4

B(v1, v2, v3, v4, vB) f 1(v1) f 2(v2) dv1 dv2 dv3 dvB, (68)

with obvious meaning for the sets D3, D4.
For this irreversible chemical reaction, the reaction–diffusion equations fol-

lowing from the rescaled Boltzmann equations (22) are:

∂ρs

∂t
− ϒ s �xρ

s = − λs K ρ1 ρ2, (69)
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with λ1 = λ2 = −λ3 = −λ4 = 1, and the coefficient K standing for:

K = (m1m2)
3
2

(2π )3

∫
R3

∫
D1

B(v1, v2, v3, v4, vB)

× exp

[
− 1

2
(m1|v1|2 + m2|v2|2)

]
dv1 dv2 dv3 dv4 dvB . (70)

4.2. Gases with Internal Energy

It is possible to build up a reactive kinetic model of Boltzmann type which
also takes into account the internal energy of the species. This is achieved for
example in Ref. 14 with a discrete set of internal energies. It is also achieved in
Ref. 12 assuming that for each species As , the distribution function f s depends
(besides on time, position and velocity) on a continuous internal energy parameter
I which varies in R

+.
The incoming energy corresponding to an elastic encounter between two

molecules As , Ar with velocity and internal energy (v, I ) and (v∗, I∗) respectively
is:

E = 1

2
ms |v|2 + 1

2
mr |v∗|2 + I + I∗ .

Then, a proportion 1 − R (with R ∈ [0, 1]) of this energy is attributed to the
internal energy of the outgoing molecules, in the sense that

I ′ + I ′
∗ = (1 − R) E .

This internal energy is distributed to the two particles according to

I ′ = r (1 − R) E , I ′
∗ = (1 − r ) (1 − R) E ,

with r ∈ [0, 1]. This procedure is sometimes called “Borgnakke–Larsen model.”
Therefore the kinetic energy of the outgoing molecules is R E , and as a conse-
quence the post–collision velocities are provided by the relations:

v′ = ms

ms + mr
v + mr

ms + mr
v∗ + mr

ms + mr

√
2RE
µsr

Tω̂

(
v − v∗
|v − v∗|

)
,

v′
∗ = ms

ms + mr
v + mr

ms + mr
v∗ − ms

ms + mr

√
2RE
µsr

Tω̂

(
v − v∗
|v − v∗|

)
. (71)

The non–reactive Boltzmann collision operator for this physical situation is given
by(12):

Qsr
EL( f s, f r )(v, I ) =

∫
D

[ f s(v′, I ′) f r (v′
∗, I ′

∗) − f s(v, I ) f r (v∗, I∗)]
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×Bsr (v, v∗, I, I∗, R, r, ω̂)
(1 − R)

|v − v∗| ψ s(I )
dv∗ d I∗ d R dr dω̂ (72)

where D = {v∗ ∈ R
3; I∗ ≥ 0; r, R ∈ [0, 1]; ω̂ ∈ S2}, and ψ s(I ) d I is a nonnega-

tive measure which is a parameter of the model.
Analogous considerations allow to also build up the chemical scattering

operators corresponding to the chemical reaction A1 + A2 ⇀↽ A3 + A4. Skipping
further details, the reactive collision kernel for the species 1 is defined(12) as:

Q1
CH(f)(v, I ) =

∫
D
H 1


(

µ12

µ34

)3

f 3


α1v + α2v∗+ α4

√
2

µ34

(
RE− �E34

12

6

)

× Tω̂

(
v − v∗
|v − v∗|

)
, (1 − R)rE− �E34

12

6

)
f 4


α1v + α2v∗ − α3

√
2

µ34

(
RE− �E34

12

6

)

× Tω̂

(
v − v∗
|v − v∗|

)
, (1 − R)(1 − r )E − �E34

12

6

)
− f 1(v, I ) f 2(v∗, I∗)

]

×B34
12(v, v∗, I, I∗, R, r, ω̂)

(1 − R)

(m1m2)2|v − v∗| ψ1(I )
dv∗ d I∗ d R dr dω̂, (73)

where the unit step function H 1 takes into account the threshold effects involved
in the endothermic direct reaction. The operators Q2

CH, Q3
CH, Q4

CH, not reported
here for the sake of brevity, present a similar structure.

It is worth remarking that the Maxwellian collision equilibrium of the elastic
operator also depends on the internal energy I . More precisely, the solution to the
equation

∑4
r=1 Qsr

EL( f s, f r ) = 0 turns out to be(12):

f s(v, I ) = ρs

qs(T )

(
ms

2π T

) 3
2

exp

{
− 1

T

(
ms |v − u|2

2
+ I

)}
,

where u, T are the mean velocity and the global temperature of the mixture, and
qs (as a function of 1/T ) is the Laplace transform of ψ s :

qs(T ) =
∫ +∞

0
ψ s(I ) e−I/T d I .

The derivation of reaction–diffusion equations outlined in Sec. 3 may be
performed even starting from this model. The chemical contribution appearing in
the resulting equations has already been discussed, in the context of hydrodynamic
equations, in Ref. 12, to which the reader is addressed for further details. The final
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reaction–diffusion system is

∂ρs

∂t
− ϒ s �xρ

s = λs K
[

ρ3ρ4

q3(1)q4(1)
−

(
µ34

µ12

) 3
2

exp(−�E34
12)

ρ1ρ2

q1(1)q2(1)

]
,

(74)
where the coefficient K stands for

K = (m3m4)
3
2

(2π )3

∫
D′

exp

[
−

(
1

2
m3

∣∣v34
12

∣∣2 + I ′ + 1

2
m4

∣∣v∗34
12

∣∣2 + I ′
∗

)]

×B12
34

(
v34

12, v∗34
12, I ′, I ′

∗, R′, r ′, ω̂
) (1 − R′)

(m3m4)2
∣∣v34

12 − v∗34
12

∣∣
× dv34

12 dv∗34
12 d I ′ d I ′

∗ d R′ dr ′ dω̂ , (75)

and where D′ = {v34
12, v∗34

12 ∈ R
3; I ′, I ′

∗ ∈ R
+; r ′, R′ ∈ [0, 1]; ω̂ ∈ S2}.

4.3. Boundary and Initial Conditions

In this subsection, we explain what happens when the gases are confined in
a domain � of R

3. We also comment on the initial condition, noting that it is not
necessarily compatible with the macroscopic equation. We start again from Eq.
(28):

ε
∂ f s

ε

∂t
+ v · ∂ f s

ε

∂x
= 1

ε
Qs

EL

(
f s
ε , M

) + ε p
4∑

r=1

Qsr
EL

(
f s
ε , f r

ε

) + ε Qs
CH(fε) ,

but we now assume that x lives in a regular open set � of R
3, and that the densities

f s
ε satisfy the specular reflection boundary condition:

∀ t > 0, x ∈ ∂�, v ∈ R
3, f s

ε (t, x, v) = f s
ε (t, x, Rv), (76)

where

Rv = v − 2 (v · n̂(x)) n̂(x),

and n̂(x) is the outward normal vector to ∂� at point x. Finally, we introduce the
initial datum

∀ x ∈ �, v ∈ R
3, f s

ε (0, x, v) = f s
0 (x, v), (77)

where f s
0 (x, v) does not depend on ε.
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Then, we rewrite formula (37) in a weak form, using a smooth test function
ψ ≡ ψ(t, x) having a compact support in [0,+∞[×�:

−
∫ +∞

0

∫
�

∫
R3

f s
ε (t, x, v)

∂ψ

∂t
(t, x) dt dx dv −

∫
�

∫
R3

f s
ε (0, x, v) ψ(0, x) dx dv

+ 1

ε

∫ +∞

0

∫
∂�

∫
R3

(v · n̂(x)) f s
ε (t, x, v) ψ(t, x) dt dx dv

+ 1

νs

{
− ε

∫ +∞

0

∫
�

∫
R3

v f s
ε (t, x, v) · ∂

∂t

∂

∂x
ψ(t, x) dt dx dv

− ε

∫
�

∫
R3

v f s
ε (0, x, v) · ∂

∂x
ψ(0, x) dx dv

+
∫ +∞

0

∫
∂�

∫
R3

(v · n̂(x)) v f s
ε (t, x, v) · ∂

∂x
ψ(t, x) dt dx dv

−
∫ +∞

0

∫
�

∫
R3

(v ⊗ v) f s
ε (t, x, v) :

∂

∂x

∂

∂x
ψ(t, x) dt dx dv

− ε p
4∑

r=1

∫ +∞

0

∫
�

∫
R3

v Qsr
EL( f s

ε , f r
ε )(t, x, v) · ∂

∂x
ψ(t, x) dt dx dv

− ε

∫ +∞

0

∫
�

∫
R3

v Qs
CH(fε)(t, x, v) · ∂

∂x
ψ(t, x) dt dx dv

}

=
∫ +∞

0

∫
�

∫
R3

Qs
CH(fε)(t, x, v) ψ(t, x) dt dx dv.

(78)

Using the boundary condition (76), we see that
∫

R3

(v · n̂(x)) f s
ε (t, x, v) dv = 0, so

that the third term in the above equation is cancelled.
Then, passing to the limit in (78), and remembering that at first order

f s
ε (t, x, v) ∼ ρs(t, x) Ms(v), we get

−
∫ +∞

0

∫
�

ρs(t, x)
∂ψ

∂t
(t, x) dt dx −

∫
�

∫
R3

f s
0 (x, v) ψ(0, x) dx dv

+ 1

νs

∫ +∞

0

∫
∂�

∫
R3

(v · n̂(x)) v ρs(t, x) Ms(v) · ∂

∂x
ψ(t, x) dt dx dv

− 1

msνs

∫ +∞

0

∫
�

ρs(t, x) �xψ(t, x) dt dx

=
∫ +∞

0

∫
�

∫
R3

Qs
CH

(
ρ(t, x) M(v)

)
ψ(t, x) dt dx dv. (79)
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We now observe that ∫
R3

(v · n̂(x)) v Ms(v) dv = 1

ms
n̂(x),

and that the last term in (79) is given by (40). As a consequence, (79) is nothing
but the weak formulation of the reaction-diffusion (42) together with the initial
datum

ρs(0, x) =
∫

R3

f s
0 (x, v) dv,

and the homogeneous Neumann boundary condition

∀x ∈ ∂�,
∂

∂x
ρs(t, x) · n̂(x) = 0.

Note that whenever f s
0 (x, v) is not a Maxwellian function of the variable v, then

there is the formation of an initial layer.

4.4. Different Scaling for Different Chemical Reactions

Finally, it is possible to extend the derivation of reaction–diffusion systems
to physical situations involving chemical reactions which occur with rates having
different orders of magnitude.

If we add a chain of n slower chemical reactions to the rescaled Boltzmann
equations (22):

ε
∂ f s

ε

∂t
+ v · ∂ f s

ε

∂x
= 1

ε
Qs

EL

(
f s
ε , M

) + ε p
N∑

r=1

Qsr
EL

(
f s
ε , f r

ε

)

+ ε Qs
CH(fε) + ε2

n∑
i=1

(
Qs

CH(fε)
)

i
(80)

(where (Qs
CH(fε))i denotes the net production due to the chemical reaction i),

obviously the additional chemical operators do not influence the final reaction–
diffusion equations, which retain only the O(ε) terms. On the other hand, inter-
esting modifications arise if one (or more) chemical reaction becomes faster than
in the scaling (22), for instance O(1) instead of O(ε), and this will be the main
subject of this subsection.

We consider for example a mixture of eight gases, As , s = 1, . . . , 7, plus the
background, undergoing the following two reversible chemical reactions:

A1 + A2 ⇀↽ A3 + A4 , (81a)

A1 + A5 ⇀↽ A6 + A7 . (81b)
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In our regime dominated by the elastic collisions with the background (of or-
der 1/ε), we assume that the reaction (81b) is O(1) as the streaming operator,
while the reaction (81b) remains slow (O(ε)) as the temporal derivative. Thus, the
rescaled kinetic equations read as

ε
∂ f s

ε

∂t
+ v · ∂ f s

ε

∂x
= 1

ε
Qs

EL

(
f s
ε , M

) + ε p
7∑

r=1

Qsr
EL

(
f s
ε , f r

ε

)
+(

Qs
CH(fε)

)
a
+ ε

(
Qs

CH(fε)
)

b
, (82)

where (Qs
CH(fε))a and (Qs

CH(fε))b denote the chemical terms corresponding to the
reactions (81b) and (81b) respectively. Since we still have Qs

EL( f s
ε , M) = O(ε),

the distribution functions are again perturbations of Maxwellian distributions:
f s
ε = ρs

ε Ms + ε gs
ε with gs

ε = O(1). If we assume that the intermolecular forces
are of Maxwell molecules type, in the present scaling the equation (37), obtained
inserting the momentum equation into the number density equation, becomes

∂

∂t

∫
R3

f s
ε (v) dv + ∂

∂x
·
{
− ε

νs

∂

∂t

∫
R3

v f s
ε (v) dv − 1

νs

∂

∂x
·
∫

R3

(v ⊗ v) f s
ε (v) dv

+ ε p

νs

7∑
r=1

∫
R3

v Qsr
EL

(
f s
ε , f r

ε

)
(v) dv + 1

νs

∫
R3

v
(
Qs

CH(fε)
)
a
(v) dv

+ ε

νs

∫
R3

v
(
Qs

CH(fε)
)
b
(v) dv

}
= 1

ε

∫
R3

(
Qs

CH(fε)
)

a
(v) dv +

∫
R3

(
Qs

CH(fε)
)

b
(v) dv .

(83)

The first chemical contribution on the right-hand side is the dominant term:∫
R3

(
Qs

CH(fε)
)

a
(v) dv = O(ε).

This implies that the leading order of such contribution, given explicitly in (40),
has to vanish, hence the number densities of the four species A1, A2, A3, A4 fulfill

ρ1
ε ρ2

ε

ρ3
ε ρ4

ε

=
(

µ12

µ34

) 3
2

exp
(
�E34

12

) + O(ε) , (84)

that represents the mass action law for the chemical collision equilibrium corre-
sponding to the reaction (81a). So, since the number densities ρ1

ε , ρ2
ε , ρ3

ε , ρ4
ε are

related by the constraint (84), their evolution is completely described by means of
only three independent balance equations. We shall choose as independent vari-
ables ρ1

ε + ρ3
ε , ρ2

ε + ρ3
ε , ρ2

ε + ρ4
ε , but any combination of them could be used

equivalently. The corresponding evolution equations are provided by summing up
the eqs. (83) relevant to the species (1, 3), (2, 3), (2, 4), respectively. Notice that,
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thanks to some parity arguments, both elastic and chemical terms on the left-hand
side of (83) do not yield O(1) contributions.

Moreover, bearing in mind the weak forms (21), we have∫
R3

{
(Q1

CH(fε))a(v) + (Q3
CH(fε))a(v)

}
dv = 0 ,

and analogously for the species (2, 3) and (2, 4). In conclusion, the reaction–
diffusion system corresponding to the kinetic model (82) can be cast as

ρ1 ρ2

ρ3 ρ4
=

(
µ12

µ34

) 3
2

exp
(
�E34

12

)
,

∂

∂t
(ρ1 + ρ3) − 1

m1ν1
�xρ

1 − 1

m3ν3
�xρ

3

= ν67
15

2√
π

�

(
3

2
,�E67

15

) [(
µ15

µ67

) 3
2

exp
(
�E67

15

)
ρ6 ρ7 − ρ1 ρ5

]
,

∂

∂t
(ρ2 + ρ3) − 1

m2ν2
�xρ

2 − 1

m3ν3
�xρ

3 = 0,

∂

∂t
(ρ2 + ρ4) − 1

m2ν2
�xρ

2 − 1

m4ν4
�xρ

4 = 0,

∂ρs

∂t
− 1

msνs
�xρ

s = λs ν67
15

2√
π

�

(
3

2
,�E67

15

)

×
[(

µ15

µ67

) 3
2

exp(�E67
15) ρ6 ρ7−ρ1 ρ5

]
, (85)

for s = 5, 6, 7, with λ5 = −λ6 = −λ7 = 1. This is a set of seven independent
macroscopic equations. The main difference with respect to previous subsections
is the constraint (84), consistent with the fact that the relaxation to the equilibrium
corresponding to (81a) is assumed faster than other scattering effects. Then, con-
tributions relevant to the slower reaction (81b) affect the evolution of the involved
species s = 1, 5, 6, 7 as in the Eqs. (42).

4.5. Remarks

In this subsection, we indicate some possibilities of different (but related)
scalings.

1. We first notice that the Maxwellian (3) used as background distribu-
tion could have its macroscopic parameters different from ρ = 1, T = 1.
Note however that it is not possible to take a mean velocity u different
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from 0, except if this velocity is of order ε. In this last case, we expect the
appearance in the macroscopic equations of convection terms involving
this velocity.

2. One other possibility is that one of the parameters occurring in the chem-
ical kernels, for example the exchanged energy of chemical link �E34

12
or some masses (typically if one of the species is electrons while others
are ions or molecules), be rescaled. This can change the macroscopic
equations (see Refs. 7, 8 for scalings involving very different masses).

5. MATHEMATICAL RESULTS IN THE LINEAR CASE

In this section, we consider a mixture of three gases, A1, A2 plus the back-
ground B, that can interact according to the following reversible chemical reaction:

A1 + B ⇀↽ A2 + B . (86)

The kinetic chemical operators corresponding to this reaction present a linear
dependence on the distribution functions f 1, f 2, since in each reaction the partner
molecule belongs to the fixed background, with Maxwellian distribution (3). More
precisely, if we assume the direct reaction endothermic, we have

Q1
CH(f)(v) =

∫
R3

∫
S2

H

(
|v − v∗|2 − 2 �E2

1

µ1B

)
B2B

1B (v − v∗, ω̂)

×
[

f 2
(
v2B

1B

)
M

(
v∗2B

1B

) − f 1(v) M(v∗)
]

dv∗ dω̂ , (87)

where �E2
1 = E2 − E1. Notice that, thanks to the conservation of total mass in

the reaction (86), m1 = m2, and consequently the factor (appearing in (58)) which
involves the ratio between reduced masses is unitary in the present frame. The
operator Q2

CH(f) can be obtained by permutating the indices in (87), and recalling
that the reverse exothermic reaction does not need a threshold. For any species
s = 1, 2, in the sequel we shall neglect elastic collisions with particles of whatever
species r = 1, 2, since in our scaling these elastic encounters do not influence
the final macroscopic reaction–diffusion equations. Thus, the rescaled Boltzmann
equation we shall deal with is

ε
∂ f s

ε

∂t
+ v · ∂ f s

ε

∂x
= 1

ε
Qs

EL

(
f s
ε , M

) + ε Qs
CH(fε), s = 1, 2. (88)

We shall treat from a mathematical point of view the diffusive limit ε → 0 of this
linear kinetic problem, with initial conditions

f s
ε (0, x, v) = f s

0 (x, v) ∈ L2

(
R

3 ×
(

R
3,

dv

Ms(v)

))
, (89)

and under the Maxwell molecules assumptions (27) on the cross sections.
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We prove the

Theorem 1: Let f s
ε be the unique solution of eq. (88), (89) in L∞(R+; L2(R3 ×

(R3, dv
Ms (v) ))), where Qs

CH is given by (87), Qs
EL is defined by (9), and the cross sec-

tions in Qs
CH, Qs

EL satisfying the Maxwell molecules assumption (27). When
ε goes to 0, f s

ε converges in L∞(R+; L2(R3 × (R3, dv
Ms (v) ))) weak * towards

ρs(t, x) Ms(v), where ρs is the unique solution (in L∞(R+; L2(R3))) of the
reaction-diffusion system

∂ρs

∂t
− 1

msνs
�xρ

s = −λsν2B
1B

2√
π

�

(
3

2
,�E2

1

) [
exp

(
�E2

1

)
ρ2(t, x) − ρ1(t, x)

]
,

ρs(0, x) =
∫

R3

f s
0 (x, v) dv, (90)

with λ1 = −λ2 = 1.

Proof of theorem 1: Note first that the existence and uniqueness of a solution to
Eq. (88), (89) in L∞(R+; L2(R3 × (R3, dv

Ms (v) ))) is a direct consequence of Cauchy-
Lipschitz theorem (once one has made the change of variable (x, v) → (x + v t, v)
related to the characteristics of the free transport) since both elastic and chemical
collision kernels are bounded in L2(R3, dv

Ms (v) ) (as operators on functions acting
on the variable v only).

We now recall the main a priori estimate (directly related to the H-theorem)
for Eq. (88), (89). For a smooth enough test function ϕs(t, x, v), we multiply the
s–th Eq. (88) by ϕs and then integrate on [0, T ] × R

3 × R
3. We obtain

ε

∫ T

0

∫
R3

∫
R3

ϕs ∂ f s
ε

∂t
dt dx dv +

∫ T

0

∫
R3

∫
R3

ϕs v · ∂ f s
ε

∂x
dt dx dv

= 1

ε

∫ T

0

∫
R3

∫
R3

ϕs Qs
EL

(
f s
ε , M

)
dt dx dv

+ε

∫ T

0

∫
R3

∫
R3

ϕs Qs
CH(fε) dt dx dv. (91)

Specializing this formula for

ϕs = f s
ε

Ms
exp(Es), (92)

and summing then equalities (91) over s, we first see that

ε

2∑
s=1

exp(Es)
∫ T

0

∫
R3

∫
R3

f s
ε

Ms

∂ f s
ε

∂t
dt dx dv
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= ε

2∑
s=1

exp(Es)

2

∫
R3

∫
R3

(
f s
ε (T, x, v)

)2

Ms(v)
dx dv

−ε

2∑
s=1

exp(Es)

2

∫
R3

∫
R3

(
f s
0 (x, v)

)2

Ms(v)
dx dv. (93)

Analogously, the second term in (91) provides

2∑
s=1

exp(Es)
∫ T

0

∫
R3

∫
R3

f s
ε

Ms
v · ∂ f s

ε

∂x
dt dx dv = 0 . (94)

Then, with calculations very similar to (25), the elastic contribution in (91) can be
rearranged (this is the H-theorem) as

1

ε

2∑
s=1

exp(Es)
∫ T

0

∫
R3

∫
R3

f s
ε

Ms
Qs

EL

(
f s
ε , M

)
dt dx dv

= − 1

ε

2∑
s=1

eEs

2

∫
R
B̃s

[
f s
ε (v′)

Ms(v′)
− f s

ε (v)

Ms(v)

]2

Ms(v) M(v∗) dt dx dv dv∗ dω̂ ≤ 0 ,

(95)
where the domain R = {t ∈ [0, T ]; x ∈ R

3; v ∈ R
3; v∗ ∈ R

3; ω̂ ∈ S2}. It can be
shown that the chemical contribution is also less or equal to zero. In fact, bearing in
mind the weak forms of the chemical operators (21), we have (this is the H-theorem
for the reactive Boltzmann kernels)

ε

2∑
s=1

∫ T

0

∫
R3

∫
R3

f s
ε

Ms
exp(Es) Qs

CH(fε) dt dx dv

= ε

∫
R

H

(
|v − v∗|2 − 2 �E2

1

µ1B

)
B̃2B

1B

[
f 1
ε (v)

M1(v)
eE1 − f 2

ε

(
v2B

1B

)
M1

(
v2B

1B

) eE2

]

×
[

f 2
ε

(
v2B

1B

)
M1

(
v2B

1B

) M1
(
v2B

1B

)
M

(
v∗2B

1B

) − f 1
ε (v)

M1(v)
M1(v)M(v∗)

]
dt dx dvdv∗ dω̂

= − ε eE1

∫
R

H

(
|v − v∗|2 − 2 �E2

1

µ1B

)
B̃2B

1B

[
f 1
ε (v)

M1(v)
− f 2

ε

(
v2B

1B

)
M1

(
v2B

1B

) e�E2
1

]2

× M1(v) M(v∗) dt dx dvdv∗ dω̂ ≤ 0
(96)
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(the Maxwellians M1 and M2 coincide, since m1 = m2). In conclusion, taking
into account (93)–(96), we get the basic a priori estimate

2∑
s=1

exp(Es)
∫

R3

∫
R3

∣∣ f s
ε (T, x, v)

∣∣2

Ms(v)
dx dv

+ 1

ε2

2∑
s=1

eEs

∫
R
B̃s

[
f s
ε (v′)

Ms(v′)
− f s

ε (v)

Ms(v)

]2

Ms(v) M(v∗) dt dx dv dv∗ dω̂

+ 2 eE1

∫
R

H

(
|v − v∗|2 − 2 �E2

1

µ1B

)
B̃2B

1B

[
f 1
ε (v)

M1(v)
− f 2

ε (v2B
1B)

M1(v2B
1B)

e�E2
1

]2

× M1(v) M(v∗) dt dx dvdv∗ dω̂

≤
2∑

s=1

exp(Es)
∫

R3

∫
R3

∣∣∣ f s
0 (x, v)

∣∣∣2

Ms(v)
dx dv . (97)

Thanks to the assumption (89) on the initial datum, all the terms on the left-
hand side turn out to be uniformly bounded by the (weighted) L2–norm of
the initial datum. Thus we have proven that f s

ε is a bounded sequence in
L∞(R+; L2(R3 × (R3, dv

Ms (v) ))). Consequently there exists a subsequence f s
ε that

is weakly * convergent in this space to some f s . This exactly means that∫ +∞

0

∫
R3

∫
R3

f s
ε ϕs

Ms
dt dx dv −→

∫ +∞

0

∫
R3

∫
R3

f s ϕs

Ms
dt dx dv ,

∀ϕs ∈ L1

(
R

+; L2

(
R

3 × (
R

3,
dv

Ms(v)

)))
.

Hence, taking test functions of the form

ϕs(t, x, v) = ψ(t, x) Ms(v), ψ(t, x) v Ms(v), ψ(t, x) (v ⊗ v)Ms(v),

with ψ(t, x) ∈ L1(R+; L2(R3)), we get

∫ +∞

0

∫
R3

∫
R3

ψ(t, x)


 1

v
v ⊗ v


 f s

ε dt dx dv

−→
∫ +∞

0

∫
R3

∫
R3

ψ(t, x)


 1

v
v ⊗ v


 f s dt dx dv. (98)
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For Maxwell molecules, the same also holds for the chemical linear operator:

∫ +∞

0

∫
R3

∫
R3

ψ(t, x)

(
1
v

)
Qs

CH(fε) dt dx dv

−→
∫ +∞

0

∫
R3

∫
R3

ψ(t, x)

(
1
v

)
Qs

CH(f) dt dx dv (99)

since in the kernel, f s
ε is multiplied by a Maxwellian and by the bounded function

B̃2B
1B .

Therefore, passing to the limit ε → 0 in the weak form of the macroscopic
Eq. (37), we get that the limit function f s fulfills the equation, for any ψ ∈
D(R+ × R

3):

−
∫ +∞

0

∫
R3

∫
R3

f s(t, x, v)
∂ψ

∂t
(t, x) dt dx dv −

∫
R3

∫
R3

f s
0 (x, v) ψ(0, x) dx dv

− 1

νs

∫ +∞

0

∫
R3

∫
R3

(v ⊗ v) f s(t, x, v) :
∂

∂x

∂

∂x
ψ(t, x) dt dx dv

=
∫ +∞

0

∫
R3

∫
R3

Qs
CH(f)(t, x, v) ψ(t, x) dt dx dv.

(100)
Coming back to estimate (97), we obtain

J
(

f s
ε

)
:=

∫
R
B̃s

[
f s
ε (v′)

Ms(v′)
− f s

ε (v)

Ms(v)

]2

Ms(v) M(v∗) dt dx dv dv∗ dω̂ ≤ C ε2 ,

(101)
hence lim

ε→0
J ( f s

ε ) = 0.

Let ψ ≡ ψ(t, x, v, v∗, ω̂) be a test function in L∞
c . Then

∣∣∣∣
∫
R

(
f s
ε (v′)

Ms(v′)
− f s

ε (v)

Ms(v)

)
ψ(t, x, v, v∗, ω̂) dt dx dv dv∗ dω̂

∣∣∣∣ ≤ C J ( f s
ε )1/2

if B̃s is bounded below by some strictly positive number (if it is not the case, one
uses

∫
B̃s dω̂ instead of B̃s). This implies that

f s(v′)
Ms(v′)

= f s(v)

Ms(v)
a.e.

Therefore, f s = ρs Ms .
By substituting this formula into the evolution equation (100), the evolution

of the number density ρs is governed by the following weak form of the reaction–
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diffusion equation:∫ +∞

0

∫
R3

ρs(t, x)
∂ψ

∂t
(t, x) dt dx +

∫
R3

ρs(0, x) ψ(0, x) dx

+ 1

msνs

∫ +∞

0

∫
R3

ρs(t, x) �xψ(t, x) dt dx = − λs ν2B
1B

2√
π

×�

(
3

2
,�E2

1

) ∫ +∞

0

∫
R3

[
exp

(
�E2

1

)
ρ2(t, x) − ρ1(t, x)

]
ψ(t, x) dt dx ,

(102)
with λ1 = −λ2 = 1. By uniqueness of the weak solution of this equation, we see
that the whole sequence f s

ε converges, and this concludes the proof of theorem 1.
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